Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria.
نویسندگان
چکیده
S-nitrosation of mitochondrial proteins has been proposed to contribute to the pathophysiological interactions of nitric oxide (NO) and its derivatives with mitochondria but has not been shown directly. Furthermore, little is known about the mechanism of formation or the fate of these putative S-nitrosothiols. Here we have determined whether mitochondrial membrane protein thiols can be S-nitrosated on exposure to free NO from 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (DETA-NONOate) by interaction with S-nitrosoglutathione or S-nitroso-N-acetylpenicillamine (SNAP) and by the NO derivative peroxynitrite. S-Nitrosation of protein thiols was measured directly by chemiluminescence detection. S-Nitrosoglutathione and S-nitroso-N-acetylpenicillamine led to extensive protein thiol oxidation, with about 30% of the modified protein thiols persistently S-nitrosated. In contrast, there was no protein thiol oxidation or S-nitrosation on exposure to 3,3-bis (aminoethyl)-1-hydroxy-2-oxo-1-triazene. Peroxynitrite extensively oxidized protein thiols but produced negligible amounts of S-nitrosothiols. Therefore, mitochondrial membrane protein thiols are S-nitrosated by preformed S-nitrosothiols but not by NO or by peroxynitrite. These S-nitrosated protein thiols were readily reduced by glutathione, so S-nitrosation will only persist when the mitochondrial glutathione pool is oxidized. Respiratory chain complex I was S-nitrosated by S-nitrosothiols, consistent with it being an important target for S-nitrosation during nitrosative stress. The S-nitrosation of complex I correlated with a significant loss of activity that was reversed by thiol reductants. S-Nitrosation was also associated with increased superoxide production from complex I. These findings point to a significant role for complex I S-nitrosation and consequent dysfunction during nitrosative stress in disorders such as Parkinson disease and sepsis.
منابع مشابه
Direct evidence for S-nitrosation of mitochondrial complex I.
NO* (nitric oxide) is a pleiotropic signalling molecule, with many of its effects on cell function being elicited at the level of the mitochondrion. In addition to the well-characterized binding of NO* to the Cu(B)/haem-a3 site in mitochondrial complex IV, it has been proposed by several laboratories that complex I can be inhibited by S-nitrosation of a cysteine. However, direct molecular evide...
متن کاملNitric oxide and mitochondrial respiration in the heart.
Nitric oxide (NO) inhibits the mitochondrial respiratory chain, resulting in inhibition of ATP production, increased oxidant production and increased susceptibility to cell death. NO reversibly binds to the oxygen binding site of cytochrome oxidase, reacting either with the oxidised copper to give inhibitory nitrite, or with the reduced haem, resulting in reversible inhibition in competition wi...
متن کاملA mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury.
Nitric oxide (NO(*)) competitively inhibits oxygen consumption by mitochondria at cytochrome c oxidase and S-nitrosates thiol proteins. We developed mitochondria-targeted S-nitrosothiols (MitoSNOs) that selectively modulate and protect mitochondrial function. The exemplar MitoSNO1, produced by covalently linking an S-nitrosothiol to the lipophilic triphenylphosphonium cation, was rapidly and ex...
متن کاملNitrosative stress and redox-cycling agents synergize to cause mitochondrial dysfunction and cell death in endothelial cells☆
Nitric oxide production by the endothelium is required for normal vascular homeostasis; however, in conditions of oxidative stress, interactions of nitric oxide with reactive oxygen species (ROS) are thought to underlie endothelial dysfunction. Beyond canonical nitric oxide signaling pathways, nitric oxide production results in the post-translational modification of protein thiols, termed S-nit...
متن کاملInvolvement of Cytochrome P-450 in n-Butyl Nitrite-Induced Hepatocyte Cytotoxicity
Addition of n-butyl nitrite to isolated rat hepatocytes caused an immediate glutathione depletion followed by an inhibition of mitochondrial respiration, inhi- bition of glycolysis and ATP depletion. At cytotoxic butyl nitrite concentrations, lipid peroxidation occurred before the plasma membrane was disrupted. Cytochrome P-450 inhibitors inhibited peroxynitrite formation and prev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 281 15 شماره
صفحات -
تاریخ انتشار 2006